R. Charleene Lennox, George F. Luger, & Raymond W. I-?arrigan Arti:ﬁcz'al
Intelligence Based Control of a Sensor-Driven Machine. Proceedings of
Conference on Computers and Communications, Sponsored by [EEE

Computer Society, 1985

Acrtificial Intelligence Based Control of 2 Sensor-Driven Machine

R. Charleere Lennox
George F. Luger
Department Of Computer Science
University of New Mexico

and

Raymond W. Harrigan
Intelligent Machine Systems Division
Sandia National Laboratories
Albugaerque, New Mexico

USEnet: ...uchvaxlunmvaxrobot
ARPAnet: unmvaxirobot@berkeley

Abstract

This paper is divided into four sections. The first is an
introduction to the research area. The second is a brief
overview of the history of "planning” in Artificial Intelligence.
The third part of the paper describes the representational
power of very-high level computer languages and how this
power may be brought to planning in robotics research. Finally
we describe our PROLQG-driven planrer for controlling a
PUMA arm in solving " blocks™ problems.

1. Introduction

Intelligent machine systems will necessarily require the
integration of sensors and artificial intelligence techniques with
. hierarchical manipnlator control to provide a system capable of
semiautonomous operation. Current robot.systems have very
limited semsing capability and achieve positioning through
open-loop control techniques. Suoch systems have serious
limitations in that there is no ability to adapt to unstructured
or changing environments., This is a particularly severe
limitation in hazardous environments where an inappropriate
action can result in acute danger to personnel and equipment.

A desived goalin robotics technology is the development of
sensor based control in which a general description of a task is
taken by a machine controller and a detailed plan i
formulated internally and executed to accomplish the task.
The key advantage of such robot systetns would be to put the
human operator in a supervisory role thus making the robet
system more efficient and semiantonomous in a wide variety of
application areas.

_Semiavtepomous rohot systems controlled at the task lese]
must be highly integrated sensor-rich systems. To the extent
that the human is removed from the control loop so must the
capabilities of sight, touch, rezsoning and movement be added,
although not necessarily achieved in the same way. System
considerations include processinz of sensor data to derive
relevant information about the operating environment, task
planning based on artificial intelligence techmiques to logically
act on informmation about the environment as well as to
formulate manipulator command sequences, and manipulator
action to carry out the task.

Of primary importance in making a robot system
semiautonomous is the use of artificial intelligence (Al)
technigues. A great deal of research in the field of Al has been
directed toward the development of an information-processing
theory of inteiligence. For some {computer scientists and
engineers) the purpose has been to understand how machines
can be made to exhibit intelligence. Others {psychologists,
lingnists and philosophers) have nsed the computer as a teool in

ynderstanding intefligent behavior in humans., A common goal
has been to discover principles that all intelligent information-
processors must use. This research has produced technicques in
the basic areas of knowledge representation, problem solving
and planning, logie, language understanding, learning and
_perception: -areas- which .are especially zrelewaat to a
semiautonomens robot system.

Task planning is problem solving in a noncommautative
system and, as such, requires selecting a good representation of
the problem as well as an efficient control strategy for
searching for a solution. The chosen representation not cnly
must provide techmiques for modeling the environment in
which the robot finds itself and for describing the process of
changing cne world state to another, but .must .aiso be
compatible with the evolutionary development of the robot
system. Al programming languages have been developed that
are modular so that changes in the knowledge base do mot
require extensive changes to the existing programs.

‘While techniques and representations for generating plans
exist, most were developed for purely cognitive problems and
have rarely been implemented in real-time control of robota.
This report snmmarizes work performed -over the past year in
which ap artificial intelligence based planner was integrated
with a vision system and a PUMA 560 robot to complete
apecified tasks involving the sorting of objects on a table. The
planner, written in PROLOG, generates the plans and
monitors the execution of the plan using feedback from the
manipulator’s force sensor and the vision system. Work is
continuing on replanniag and error recovery.

A general history of planners and a description of -high-

“level languages are given to provide background for the rest of

the paper.

2. An Historical Review of Al Planners

Planning, as a preblem solving tecknique which produces a
set of primitive operations to be carried out to achieve a geal,
has been the subject of much research over the last 25 years.
An_important —early problem .solver, The General Problem
Solver (GPS), was designed in 1957 by the Carnegie-RAND
group, Allen Newell, C. J. Shaw and Herbert A. Simon. Both
Simon and Newell had had a long-time interest in human
problem-selving methods. They identified a number of these
preblem-solving techniques using the transcripts from several
experiments in which subjects were asked to "think aloud” a»
they were solving various kinds of puzzles. Among the
techniques which were made a part of GPS is means-ends
analysis which compares the carrent state of the world (where
we are) with the goal state (where we want to be). If they are

the same, the problem is solved. Ctherwise, an operator, or
function, which will reduce the difference between the two
states is selected and then applied. This sequence is continned
until the current state matches the goal state.

GPS succeeded in simulating human problem solving, but
only in a limited problem domain. The amount of specialized
knowledge required to solve a class of problems made a general
problem solver infeasible. However, GPS demonstrated that a
machine can solve problems by functional reasorping and
clarified some of the problem- solving procedures that human
beings had been using all along. The techniques of GPS were
to become a part of a number of planners developed over the
next 25 years.

At about the time GPS appeared John McCarthy, of MIT,
was working on a similar idea. He proposed Advice Taker, a
program which would use common sense to solve a variety of
problems and would interactively take advice in order to
improve its performance. This idea of getting advice from an
expert to help solve 2 problem has been used in the design of
several planners. Two important by-products of McCarthy's
work on the Advice Taker were the creation of LISP and the
first implementation of a time-sharing system.

In 1965 Alap Robinson published a paper [13] describing
an efficient way of proving theorems in first-order predicate
calculus. Al groups at MIT, Stanford Research Institate (SRI)
and the University of Edinburgh recognized that the
Resolution Method of theorem proving could be used to
construct problem sclutions. Cordell Greer [7] developed the
QA3 program to explore the use of the Resolution Method for
solving state-transformation problems. The world is modelled
as a state space and actions as state transitions. The system
attempts to prove that there exists a state in which the goal
condition (or theorem) is true using a set of assertions about
the initial state and another set that describes the effect of
primitive operations on the state. The comstruction proof
method produces the set of operations (state transitions) that
would create the desired state. Applications of the program
included puzzle sclutiops, computer program generation and
robot planming.

Duwing the mid-80's four large robotics projects got
underway at Stanford, SRI, MIT and the University of
Edinburgh. While all the projects incladed visual perception
and scene analysis, planning, and world modelling, the
emphasis was different. The robots at Stanford, MIT and
Edinburgh were manipulators while SRI's Shakey was a mobile
robot. The Shakey project focused om developing the
problem-solving system with limited hardware capabilities in
the vision system while the others emphasized development of
the vision system using somewhat ad hoc planners. From these
projects it became evident that each component of the system
required forther research. Vision peeded the development of
high resolution cameras and of methods for acquisition and
understanding of sensory data. The intelligent comtrol of
effectors required design of mechanical (hand-arm) devices, of
optical range finders, and of special tactile, force and torque
sensors as well as development of real-world representations of
the objects to be manipulated. The design and development of
the planner for Shakey revealed a number of areas for further
planning research inciuding improved efficiency, handling of
interacting goals, monitoring the execution of plans, error
recovery and replanning, and learning. Manipulators, as well
as mobile robots required efficient algorithms for finding paths
through a complex world. During the next few years research
focused on developing the individual components, and it has
been only recently that the components have again been
integrated into robotic systems.

Green'’s QA3 program was the basis for a planning system
within Shakey. In QAS3, as in GPS, the various states of the
world were completely independent; no information from one
state was assumed to carry through to the nexi. Each
operator required a large number of facts to completely
described the state of the world, some describing relationships
which were changed by the action, and others (frame axioms)
describing relationships which remained the same. Since most
actions leave most of the world unchanged, STRIPS (Stanford
Research Institute Problem Solver} was introdaced to the allow
the system to focus its attention on the important things, the
things that do change. STRIPS eliminated the frame axioms
and adopted an assumption that an action leaves all relations
in the model unchanged wunless specified otherwise. This
assumption became know as the "STRIPS assumption”. The

. changes were denoted using two lists for each STRIPS

operator: an "add list"and a "delete list”. The add list
contains those relations which are always true after the action
is performed and the delete list contains those relations that
may not be true afterwards even if they were true before. Also
assocjated with each operator are the preconditions which must
be true before the operator can be applied.

To achieve a goal an zppropriate operater is selected.
Making the operator's preconditions be trae then becomes the
subgoals which are achieved through recursive application of
the planper. This method of plabning is called problem
reduction and gives a hierarchical structure to plans.

In addition to finding a partial solution to the frame
preblem Fikes and Nilsson [5] songht to minimize the amount
of search done in a planuer based on resolution-based theorem
proving by incorporating means-ends analysis to guide the
selection of operators. The search strategy for STRIPS is
deptb-first with backtracking. Although this restricts the
number of operators that apply to a goal, there may still be
several applicable operators and no way of knowing whether
the subgoals of an operator can be satisfied or whether the
attempt to satisfy them eventually leads to a dead end.
STRIPS assumes that a goal can be completely satisfied and
proceeds to fll in all the details of the plans tc meet the
subgeals. If one of the subgoals proves to be unsatisfiable, the
work done om the plan is wasted. Therefore, this search
strategy can be highly inefficient and is limited to finding plans
with only a few steps.

A second problem with STRIPS is that it i3 a Jinear
system and, thus, cannot solve all problems. A system based
on the linear assumption expects that a goal can be achieved
by first formulating plans to achieve each of the independent
subgoals. The concatenation of these subplans in an arbitrary
order form a plan to achieve the goal. It is assumed that the
subgoals do not interact, so no provision is made for the
interleaving of subplans.

A second version of Shakey [8] added a plan executive
componeat (PLANEX) to the system. PLANEX monitored the
execution of a plan and instigated replanning when the plan
failed. Another major addition was a process for generalizing a
plan produced by STRIPS. This generalized plan was stored in
a tabular form called a "triangle table”. This added flexibility
to the supervision of execution since it was now possible to

(1) recognize and omit unneeded steps in the plan

(2) reexecute a portion of the plan if necessary
(3) repeat an unsuccessful portion of the plan
with different arguments.

Perhaps, a more obvions fonction of the gemeralized plan
is as a single macro action (MACROP). With the triangle
table format it is possible to use part or afl of s MACROP as a
single component in a new plan to solve a similar problem.
This "learning” of plans can reduce planping time of

e D g

subsequent problems and make the formulation of longer plans .

possible.

STRIPS, as one of the first snccessful planners, became
the basis for many planners whick followed. One goal of
research in the early T0's seemed to be to overcome the
limitations of STRIPS by designing planners which could solve
problems with some degree of complexity or could handle
interacting goals. Later planners incorporated methods for
dealing with both problems.

Attempts to improve efficiency have focused on reducing
the search space by use of hierarchical planning, domain-
specific information and imeta-planning. ABSTRIPS {14)
extended STRIPS by adding the capability for hierarchical
planning. Although all plans have a hierarchical structure,
hierarchical planners generate a hierarchy of representations of
a plan in which the highest is a simplification, or abstraction,
of the plan and the lowest is a detailed plan, sufficient to solve
the problem. Because a complete plan is formulated at each
level of the hierarchy, dead ends can be detected early in the
search. A means of ignoring details that obscure or complicate
a solution to a problem is also provided.

In ABSTRIPS the hierarchy is defined in terms of the
criticality of the details of the plamn with only those
preconditions with the current level of criticality considered at
each level in the formation of a plan. LAWALY [15] proved to
be more efficient than ABSTRIPS because it combined two
approaches to efficient planning. It partitioned the problem-
solving operators into hierarchies, and it constructed domain-
specific procedures for each problem domain. NOAH has a
certain similarity to LAWALY in that the hierarchy involved
problem- solving operators.

NOAH (Nets of Action Hierarchies) abstracted problem-
solving operators so that at the higher levels the plans are
made up of generalized operators. At the lowest level the plan
is made up of the primitive operators of the problem domain.
NOAH uses a representation for plans called a procedural net.
The net is built by adding nodes which are more specific
versions of the operators represented by their parents. When
the plan is completed, the procedural net is used to monitor
execution.

Stefk {16] wrote a planner for MOLGEN which abstracted
both operators and the objects in its problem space and which
extended the work of hierarchical planring to include a layered
control structure for meta-planning, planning about planning.
The lowest layer is the planning space which uses the hierarchy
of operators and objects. The higher levels allow MOLGEN to
treat the planning process itself as another task for the planner
to solve using strategies that dictate decisions about the design
of the plan.

Also concerned with meta-planning Wilensky [21] and
Faletti [4] included methods for changing the strategies used to
formulate plams. Both argued for incorporation of
commonsense inte the planning process. :

Because of the inability of linear planners to solve certain
problems, a number of planners were written to investigate
ways of handling problems with for doing this. Sussman in
HACKER, Warren (WARPLAN [20]), Tate (INTERPLAN
17]), and Waldinger [18] used similar strategies which first
tried to formulate a plan using the linear assumption. If the

. generated initial plan violates ordering constraints, the plan is

fixed by debugging the "almost right” plan or by reordering
component operators. WARPLAN was the first planmer
written tn PROLOG. It is also complete; that is, it will find a
plan if one exists. NOAH and Stefik’s MOLGEN use a "least-
commitment” approach which puts off any ordering of
operators until it is clear that a particular ordering is necessary

to avoid conflicts. MOLGEN will not order operators until
constraints are available to gaide it. NOAH has "critics”
which detect and correct interactions using the declarative, cr
plan, knowledge the is represented in the procedural pet.

Until the late 70’ planners were designed to produce
complete plans. The planners of McDermott [12] znd the
Hayes-Roths [8] are based on human approaches to planning
and almost never construct a complete plan. McDermott sees
planning and execution as interleaved processes. The planner
picks a subgoal to work on according to scheduling rules. If
the subgoal is a primitive, it is executed immediately.
Otherwise, it is reduced to its subgoals.

The Hayes-Roths’ approach is modelled after a human
planning strategy of developing a plan in a piecemeal fashion;
as opportunities present themselves detailed problem-solving
actions are included in the developing plan. Thus,
opportunistic planning includes a bottom-up, as well as a top-
down, component. The Hayes-Roths used a model developed
for the HEARSAY II system for speech nnderstanding for their
planner. Knowledge sources, or experts, participate in the
planning process, uwsing a global data strocture call a
"blackboard” for communication. The structure of the plans
are heterarchical rather than hierarchical.

Recent research has dealt with issues concerning real-time
cootrol of a robot by a plamning system. Some of the issues
are: error recovery [19), replanming [3], interactive planners
[22], and planning using temporal logic [1]. '

3. What Are High-Level Languages?

A programming language is developed to make the solving
of a certain class of problems easier. To accomplish this the
language provides the means for specifying the objects and
operations needed to solve the problem. For example,
FORTRAN was designed for numerical computing and thus
provides higher level algebraic primitives. Researchers in Al
have invented their own programming languages with features
designed to handle Al problems. In fact, new ideas in Al are
often accompanied by a new language in which it is natural to
apply these ideas.

The kinds of problems that most Al programming
Ianguages are designed to solve have arbitrary symbols as the
objects to be manipulated. These symbols can stand for
anything, not just numbers, and, by means of some data
structure, relationships between the symbols can be
represented. IPL, one of the earliest programming languages of
any kind, was the first to introduce list processing as a means
of forming associations of symbols. IPL J11] was created by
Newell, Shaw and Simon for their early Al work on problem-
solving methods and was designed using ideas from psychology,
especially the intuitive notion of association.

List processing in IPL provided not only s meaningful way
of representing objects and their associations, but also a way of
building data structures of unpredictable shape and size.
‘When parsing a sentence, choosing a chess move or planping
robot actions, one cannot know ahead of time the form of the
data structures that will represent the meaning of the sentence,
the play of the game, or the plan of the action, respectively.

* Nor can it be determined ahead of time the exact amount of

memory that will be needed. Since the unconstrained form of
data is an important characteristic of Al programs, the general
goals of data representation for any Al programming langnage
is to provide for convenient and natural representations of
objects and to free the programmer {rom the details of memory
management. :

In the summer of 1956 the first major workshop on
artificial intelligence was held at Dartmouth. At this workshop
John McCarthy,-one of the organizers of the workshop, heard a

P

description of the IPL programming langeage. McCarthy
realized that an algebraic list~processing language would be
very usefal and proceeded to implement such a languase on the
IBM 704 computer. This language, LISP, iz the second oldest
programmirng languaze in present widespread use (only slightly
younger than FORTRAN).

There are three features of LISP, besides the rich set of
list-processing primitives, that have contributed to its
popularity among the Al community. First, LISP has a style
for describing computations that is different from those of
algorithmic languages such as FORTRAN or Pascal. Instead
of specifying a sequence of steps to solve a problem, LISP uses
the application of functions. The function definitions are
patterzed after mathematical functions using lambda calculus
notation. From recumsive function theory McCarthy took the
idea of recursive function definitions and LISP become the first
langaage to sepport recursion.

A second important feature of LISP is that it has an
interpretive execution environment which permits interactive
programming. Al programs tend to have certain
characteristics that greatly influence the practice of
programming. First, they are big. Programmers usually try to
break the system down into several discrete modules that can
be written and tested separately. Often Al projects are
developed incrementally, module by module. During this
incremental development, mot yet written modules may be
simulated by a person interacting with the program. Also,
since the development of an Al program is usually a research
effort, programmers often find the best way to develop the
program is to work with i Ipteractively — giving it a
command, then seeing what happens. It was primarily this last
feature that prompted McCarthy to design LISP as an
interactive language.

Finally, LISP represents both functions (or programs) and
data by the use of lists. Because programs and data share a
commoOn Trepresentation, it is easy to write LISP programs for
handling LISP programs. For example, the LISP interpreter is
itself written im LISP. This festure also simplifies the
automatic generation and modification of LISP code and the
addition of extensions to the langnage for particular
applications.

Most Al languages in use today have been designed as
extensions to LISP. They offer some extra functions, data
types and control structures that augment the basic set LISP
provides. Some of these are PLANNER, FUZZY, QLISP,
OPS8-5 and SRL. POP-2, the most common Al langueage in
Great Britain, was developed by Al researchers at the
University of Edinburgh because a good implementation of
LiSP was not available and becanse they wanted LISP-like
ideas in an ALGOL-like syntax.

PROLOG [2), the langnage chesen for this project, is one
popular Al language which is mot an extension of LISP.
PROLOG (PROgramming In LOGic) is based on a first order
predicate calcules representation and is implemented as a
resclution-based theorem prover. Ir most conventional
programming languages the programmer specifies the logic, or
knowledge to be used in solving a problem, aud the control,
the way in which the knowledge is used. In logic
programming, as advocated by Kowalski [0], the logic and
control components of algorithms are separated with the
programmer only specifying the logic part. A programming
language which provides the means for stating what is be done,
but not how it is to be done, is a nonprocedural language [10].
PROCLOG uses a nonprocedural representation but includes a
procedural semantics; the programmer provides the logic
component while PROLOG provides the control component.
This procedural semantics may be manipulated to address such

issues 2s multiple apswers, control of backiracking and
efficiency.

A program in PROLOG is structured like the statement of
a mathematical theorem and is divided into three parts. First,
we have a number of general principles (or inference rules) that
define the problem domain. The second part is statement of a
number of particular facts. This part defines the relations
among the objects and is often referred to as the data base.
The third part is the statement of the goal (or the problem to
be solved) as a theorem to be proved. FProving the theorem
generates the answer.

In our blocks world program we have facts about the

blocks and their relationships such as:

is_on(blue, red).

clear_top(biue).

is_on{red, table).
(Note: Variables in PROLOG begin with upper case letters
and constants begin with lower case.)
There is an inference rule that says that if BlockA is not the
same block as BlockB and BlockA can be moved to the top of
BlockB then is_on(BlockA, BlockB) is true:

is_on(BlockA, BlockB) -

not{BlockA = BlockB),
move{BlockA, BlockB).
To prove the goal:
- is_on{Block, red). ‘

the fact is_on(blue, red) could be used. There exists a block
which is on the red block - the blue block. Or the inference
rule could be used for the proof. This would find a bleck
which is not the red one and in proving the sabgoal,
move(BlockA, BlockB), cause that block to be moved to the
top of the red block as a side effect of the proof procedure.
The proof of is_on{Block, red) is completed and a result is a
sequence of moves, or proof statements, that place the block in
the proper position.

Thus, programs are expressed in the form of propositions
that assert the existence of the desired result. The theorem
prover must construct the desired result to prove its existence.
In a nomprocedureal representation like PROLOG the program
states what result is wanted without specifying how to get it.
The program sets forth the relations rather than the flow of
control, and so the programmer is relieved of the responsibility
for working out the steps of an algorithm and specifying their
order. This also means that showing that a program is correct
is greatly simplified because only the logic component of a
program maust be dealt with.

In examining PROLOG for the features that were stated
as impertant to Al programming, we find that PROLOG has
most of the features. PROLOG provides for symbol
manipulation and for the defining of data structures to handle
the unpredictable shape and size of the data. It can be
executed interactively and the program and data share a
COmMIOR representation.

The program and data are both represented by claunses of

the general form:

<head> - <body> .
If the <head> is omitted, it is considered a goal; if the :-
<body> is omitted, it is comsidered a fact. Both the
<head™> and the <body>> are composed of predicates of the
form:

predicate({terml, term2,...,termn)
with a term representing individual objects in the problem
domain and the predicate defining a relation ameng the terms.
In PROLOG a clause must be in Horn clause form; <head>
has at most one predicate but <body>> may have any
number.

| LT

PROLOG doesn’t have a fixed set of data structure
constructors. Rather, a data structure is defined implicitly by
giving a description of the properties of its operations. Thus,
all data types are inherently abstract data types. This is the
nenprocedural approach to data structures.

In addition to the features already mentioned as being
Important there are other features that make PROLOG a mice
language to use. First, there is no distinction between input
and output variables so that a single predicate may function in
several different ways. Consider the predicates from the
previous example and the goal:

= Is_on(X, Y).

If neither X nor Y were set to a value, then the goal would be
proved by finding:

X == blue, Y == red

X =red, Y = table.
If X is set to the value blue this geal would use the fact
is_on(blue, red) and find:

Y == red.
With Y set to table it would find:

= red.

One way of looking at this is that in PROLOG a program can
be run either forward or backwards as needed.

Finally, a program written in PROLOG is very readable.
Since programs are described in terms of predicates and the
objects of the problem domain, programs are almost self-
documenting. This characteristic promotes clear, rapid,
accurate programming-

4. Task Planning for Rocbot Maripulation

Current robot systems are designed to perform a
preprogrammed sequence of operations. The programming of
the sequence may be dore using a teach pendant or coding the
operations in the robot's control language. Either method can
be long and tedions and produces a program which is snitable
for one task and which cannot handle unexpected occurrences.
The integration of an artificial intelligence based planner and
appropriate sensors in the system yields an "inteiligent” robot.
This robot can perform those tasks which are drawn from its
set of primitive actions and are in a specified environment, as
well as recover from etrors which may ocenr. The
investigation of the intelligent, sensor-driven control of a robot
manipulator is the focus of a research project conducted jointly
by Sandia National Laboratories and the University of New
Mexico departments of Computer Science and Electrical and
Mechanical Engineering. The long-range geal is to develop
techniques for performing human-like maintenance tasks in
hostile environments such as within a nuclear reactor. The
project provides a test bed for ideas in an enviropment which
is simpler ard more traditional but still allows for interesting
research in the areas of sensing, plamming, error recovery, and
controlling a robot.

The domain chosen for the investigation is the classic
"Blocks World” of Terry Winograd. Blocks World consists of
five 50 mm cubes on a table. Each block is identified by the
number of black spots om it (like playing dice). The Planner,
using semsory feedback from the 2-dimension vision system and
the force sensor on the robot arm, generates a sequence of
commands to accomplish the stacking or unstacking of the
blocks as specified by the operator, and communicates the
commands to the robot.

The components of the system are the Vision System, the
Controller for the robot manipulator, the Supervisor and the
Planuner . A solid state black and white television camera is
suspended over the table, looking down upon the blocks. The
signal from this camera goes to an LSI-11/73 microcomputer
which is the Vision processor. Next to the table is a PUMA

560 robot witk a Unimate Controller and a force-sensing wrist.
VAL-Il is the command language of the Unimate Controller.
The Supervisor acts as a communications controller and resides
on an LSI-11/73. The Planner program which is written in
PROLOG resides on the Research VAX at UNM and
communicates with the Sapervisor via a telephone fink.

When the system starts up, the Vision System analyzes
the scene, and locates and identifies the blocks. It then reports
the locations of the vertices to the Planner by way of the
Supervisor. The Planner uses this information to construct its
World Mcdel. The World Model is a set of predicates which
describes the state of the world and includes the position of the
arm, the number of blocks, where they are on the table, which
ones are parts of stacks and which ones are have clear tops.
Once the state of the world is determined the Planner enters
into a dialogue with the operator to determine the task
specification and then formulates a plan for the sequence of
moves the robot must make to complete the task. It then
generates commands to the Supervisor which translates them
into VAL-II commands and sexds them to the Controller. The
force sensor is used to verify the locations of the blocks and to
adjust to slight errors in positioning.

The Planner is based on traditional Al approaches to
planning especially using ideas from STRIPS and WARPLAN.
In these programs plags are made up of a sequence of actions
and each action is composed of a triple: a list of preconditions
pecessary for performing an action, the action itself and the
postconditions which describe the changes in the state of the
world once the action is performed. Unlike STRIPS a complete
plan is never formulated, but planning ard the execution of the
plan are interleaved. If a task is a primitive action, it is
executed immediately. Otherwise, the task is reduced to
achieving anbtasks. This allows' the Planner to react more
efficiently to unexpected consequences of actions.

Commands available in Blocks World are to STACK
blocks, to UNSTACK blocks, and to SEE the state of the
world, that is, to list the PROLOG predicates that comprise
the World Model on the terminal. The operator may choose to
STACK blocks on a specific location on the table or on top of
a specific block. The Planner rezsons whether the requested
stacking is possible, considering the physical constraints
imposed by the size of the manipunlator’s gripper. If the
specified location is too close to an existing stack, the Planner
will ask for farther instructions; a new locaticn may be
specified or the offending stack may be moved. In generating
the commands for moving blocks the Planner performs simple
obstacle avoidance by instructing the arm to lift a block over a
stack, if necessary, to avoid collision with the stack. In
unstacking the Planner finds the closest possible location to
place the block on the table, keeping in mind the physical
constraints.

The Planner currently will handle either s 2-D or 3D
representation of the blocks world, the difference being that a
2-D system uses the x, ¥ coordinates of four vertices to define a
block while the 3-D representation has the x, v, and z
coordinates of all eight vertices. Using the 3-D representation
it is possible for the Planner to reason about the blocks that
make up a stack and the location of blocks that can’t be seen
by a 2-D vision system.

In real-world domains things do mot always proceed zs
planned, e.g., the robot drops a bleck or the air hose on arm
knocks over a stack. Therefore, it is desirable to provide
execution-monitoring techniques and the capability of
replanning. At present only the simplest kind of error recovery
has been implemented. The Controller communicates to the
Planner that it was mot able to move a block as directed by

P

the Planrer. The reason for this may be that manipulater

sensed that it had dropped the block while moving it or that
the manipulator did not find the block where the Planner
thought it was located. The Planner them asks the Vision
System for a new scene analysis, updates the World Model and
formulates a new plan to complete the goal task given the
current state of the world.

Future plans for research call for increasing the
capabilities in several areas. First, the variouns comporents
need to be integrated into one computer system. At present
the Planner's only way of communicating to the Supervisor the
sequence of commands is by writing them to a file. Onece the
Planner and Supervisor are on the same computer they should
be able to communicate in a more straightforward manner.

In the area of semsors, we plan to add three-dimensional
vision and to include different kinds of objects. This wil
require a more complicated world model and will allow the
building of structures other than stacks. Beczuse of the varions
shapes of the objects the Planner must then plan a strategy for
grasping the object. The addition of tactile semsers for
identifying objects by touch and hand-like grippers for more
dextrous gripping is also planned.

More sophisticated error recovery is an important area of
expansion for the Planner. The Planner will need to be able to
know, not only when a block has been dropped, but also when
a stack has been knocked over or fallen over. This will require
consulting the sensors, both vision and force, more frequently.
The Vision System and Planner will have to deal with
incongruous information such as touching or overlapping
blocks which appear as one block and with incomplete
information such as the inability of the camera to see some
objects. A further goal for intelligent recovery from errors is to
guide the focus of the camera with the Planner. This would let
the Planner conjecture where the source of a problem might lie
and turn {or even relocate} the camera to study that part of
the world. :

In a2ddition to improving error recovery, there is also the
consideration of whether it is possible to use part of the
previous plan, This becomes increasingly important in complex
domains where the amount of time it takes to formulate a plan
becomes an important factor.

Acknowledgments

We would like to thank Greg Starr, Alan Christianson and
the other members of the Intelligent Machine Systems Division.
We would especially like to thank Sandia Nationzl laboratories
for their support of this research.

Bibllography

(1} Allen, IF., and Koomen, J.A., Planning Using a
Temyporal World Meodel, Proccedings of International
Joint Conference on Artificial Intelligence (IJCAT), 1983.

(2) Clocksin, W.F., and Mellish, CS., Programming in
Prolag, Springer-Verlog, 1981. N

{3) Cromarty, A.S., Shapiro, D.G., and Fehling, M.R., "5till
planners run deep”: Shallow reasoning for fast

replanning, SPIE Applications of Artificial Intelligence,
1984.

7 (4) Faletti, Joseph, PANDORA - A Program for Doiﬁg

Commonsense Planning in Complex Situations, AAAL
1983,

(5) Fikes, RE., and Nilsson, N.J., STRIPS: A New Approach
to the Application of Theorem Proving to Problem
Solving, Artificial Intelligence 2, 1971.

(6) Fikes, R.E., Hart, P.E., and Nilsson, N.J., Learning a=nd
Executing Generalized Robot Plans, Artificial Inteligence
2, 1072.

(7) Green, C., Application of Theorem Proving to Problem
Solving, IJCAL 1969,

{8) Hayes-Roth, B. and Hayes-Roth, F., Cognitive Processcs
s Planning, Rand Corp. Report R-238¢8-ONR, 1978,

(9) Kowalski, R., Algorithm == Logic + Control, Comm. of
ACM, 227, 1979.

(10) MacLennan, B.J., Principlea of Programming Langueges:
Design, Evaluation and Implementation, Holt, Rinebhart &
Winston, 1983.

(31) McCorduck, P., Machines Who Think, W.H. Freeman &
Co., 1979.

{12} McDermott, D., Planring and Acting, Cognitive Science,
2, 1978. .

(13) Robinson, J.A., A Machine-oriented Logic Based on the
Resolution Principle, J. ACM, 12:1, 1965.

(14) Sacerdoti, E.D., Planning in a Hierarchy of Abstraction
Spaces, Artificial Intelligence 5, 1973.

(15) Siklossy, L., and Dreussi, J., An Efficient Robet Planner
Which Generates Its Own Procedares, IJCAL 1973 ..

(18) Stefix, M.J., Planning with Conatraints, Stazford
University Ph.D. Thesis, 1980.

(17) Tate, A., Interacting Goals and Their Use, I/CAJ 1975.

(18) Waldinger, R., Achieving Several Geals Simultaneonsly,
Readings in Artificial Intelligence, B. Webber and N.
Nilsson, eds., Ticga Pub. Co., 1981.

{19) Ward, B., and McCalla, G., Error Detection and
Recovery in a Dynamic Planning Environment, AAAIL
1983,

(20) Warren, D.H.D., WARPLAN: A System for Generating
Plans, Dept. Computational Logie, Memo No. 78, U. of
Edinburgh, 1974.

(21) Wilensky, Planning and Understanding: A Computational
Approach to Human Reasoning, Addison-Wesley, 1983,

(22) Wilkins, DE, Domain-independent
Representation and Plan Generation,
Intelligence, 22:3, 1984,

Planning:
Artificial

